NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection

نویسندگان

  • Antonio Abeyta
  • Maria Castella
  • Celine Jacquemont
  • Toshiyasu Taniguchi
چکیده

Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypersensitivity to camptothecin in MSH2 deficient cells is correlated with a role for MSH2 protein in recombinational repair.

DNA mismatch repair (MMR) corrects DNA polymerase insertion errors that have escaped proofreading in order to avoid the accumulation of deleterious mutations. While the role of MMR in the correction of replication errors is well established, its involvement in the processing of DNA damage induced by chemical and physical agents is less clear. A role for some of the MMR proteins, such as MSH2, i...

متن کامل

Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis.

After exposure of mammalian cells to DNA damage, the endogenous Rad51 recombination protein is concentrated in multiple discrete foci, which are thought to represent nuclear domains for recombinational DNA repair. Overexpressed Rad51 protein forms foci and higher-order nuclear structures, even in the absence of DNA damage, in cells that do not undergo DNA replication synthesis. This correlates ...

متن کامل

SUMO Modification Regulates BLM and RAD51 Interaction at Damaged Replication Forks

The gene mutated in Bloom's syndrome, BLM, is important in the repair of damaged replication forks, and it has both pro- and anti-recombinogenic roles in homologous recombination (HR). At damaged forks, BLM interacts with RAD51 recombinase, the essential enzyme in HR that catalyzes homology-dependent strand invasion. We have previously shown that defects in BLM modification by the small ubiquit...

متن کامل

Human DNA Helicase B Functions in Cellular Homologous Recombination and Stimulates Rad51-Mediated 5′-3′ Heteroduplex Extension In Vitro

Homologous recombination is involved in the repair of DNA damage and collapsed replication fork, and is critical for the maintenance of genomic stability. Its process involves a network of proteins with different enzymatic activities. Human DNA helicase B (HDHB) is a robust 5'-3' DNA helicase which accumulates on chromatin in cells exposed to DNA damage. HDHB facilitates cellular recovery from ...

متن کامل

Rad18 is required for functional interactions between FANCD2, BRCA2, and Rad51 to repair DNA topoisomerase 1-poisons induced lesions and promote fork recovery

Camptothecin (CPT) and its analogues are chemotherapeutic agents that covalently and reversibly link DNA Topoisomerase I to its nicked DNA intermediate eliciting the formation of DNA double strand breaks (DSB) during replication. The repair of these DSB involves multiple DNA damage response and repair proteins. Here we demonstrate that CPT-induced DNA damage promotes functional interactions bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017